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Abstract 

Polyakov’s theory of surfaces embedded in Euclidean space-time with 

an extrinsic curvature term is stable under small fluctuations only if the 

number of dimensions is positive and ieks k&twenty-six. 
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Polyakov has proposed a theory of surfaces in which the action depends not 

only upon the area of the surface, but also on the way in which the surface is 

embedded in spacotime, through its extrinsic curvature.1-s This theory serves as 

a model for flux sheets in QCD, particularly if it is possible to reach a phase in 

which surfaces are not “creased” over large distances, as they are in the Nambu 

model, but ‘%mooth”. This theory had arisen previously in the study of interfaces 

by Helfriche and others.‘ss 

The Nambu string can be written in a way which exhibits a local conformal 

symmetry; in the quantum theory, this symmetry is only manifest in twenty-six 

dimensions.g Smooth surfaces do not appear to posssess any such conformal sym- 

metry, so presumably they are consistent theories in a wide range of dimensions. 

In this work I compute in which dimensions smooth surfaces are stable under small 

fluctuations. 

A better understanding of the role played by the Liouville theory in this model 

is gained along the way. FCrster,s Polyakov,’ and David2 suggested that the Li- 

ouville action arises in the quantization of smooth surfaces. The Liouville term is 

proportional to 26 - d, which led Davidz to conjecture that smooth surfaces are 

unstable in more than twenty-six dimensions. I show this is true, but find that the 

Liouville term does not show up where expected. Instead of being most important 

over large distances, v** it dominates only ,at short djstances. 

In conformal gauge, where the metric gob = p b.b, the action for smooth surfaces 

is 2 A”* +ig(aax.abz-p6,,b) 
+ / d*z c1 P + ‘%hs,t (P) . 0) 
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The surface is described by z = z(9), where z is a vector in d Euclidean dimensions; 

the a’, a = 1,2, are the coordinates of the world sheet. 

The first term in eq. (1) is the square of the extrinsic curvature for the surface, 

with Q a dimensionless coupling constant. In the second term, X0* is a constraint 

field which tlxes the metric to be that intrinsic to the surface. The third is the 

Nambu term, with a string tension equal to p. Lastly, the contribution of the 

Fadeev-Popov ghosts for general coordinate invariance is represented by Srh& (p). 

Suppose that one sets p = 1 in eq. (1) and drops the integration over p in 

the functional integral. This truncated theory is a sum not over all surfaces, but 

only flat ones. (By flat, I mean that the intrinsic curvature vanishes. As shown 

by the example of a cylinder, there are many surfaces that are curved extrinsically 

but not intrinsically.) I have studied this model of flat surfaces before,‘O and these 

calculations are of help here. 

The z’s appear quadratically in the action, so they can be integrated out to give 

+ s,,..,(P). (2) 

The integration is with respect to the invariant measure on the world-sheet, J d*.zp. 

I expand about the simplest possible background - an infinite, flat surface. 

Thus I assume that p = p. and X”” = -i X0 6**, where po and Xc are constants. To 

determine these constants it is necessary to calculate S.,, under this ansatz. The 

result is 

Sejj = PO A $l+Ir+~XO(l-Iog(&l)) 

where A is the area of the surface. The renormalized coupling is a,, a;’ = o-i - 
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(d/4n) log(A) + . . ., where A is a momentum cutoff. This relationship between C+ 

and cx implies that the theory is asymptotically free.1-‘*‘V8 

For the action to be stationary under variations of po and Xs, Xs = -8?rp/d = 

ezp(-Ex/(a,d)); the bare string tension, p, must be negative so that Xs > 0. The 

value of po is not fixed, and can be taken ss an arbitrary positive number. At the 

stationary point, SC,/ = 0, so the renormalized string tension vanishes. 

These results are similar to those found in the study of smooth surfaces in a 

large number of dimensions.*J At large d, the corrections to S,ff are of order l/d 

and so small. I work in an arbitrary number of dimensions, where this represents 

merely one of many possible solutions to the equations of motion. 

What, then, is the value of analyzing stability about this special solution? Be- 

cause the theory is asymptotically free, perturbation theory is valid at large mo- 

menta. But large momenta corresponds to small distances, and at short distances 

any (regular) surface is essentially fiat. Thus I establish a necessary condition for 

stability. 

Define 

where m* = po Xs > 0. Note that while the stationary point of X’* is imaginary, 

the fluctuations in bb are real. l1 This is required so that integration over the in* 

generates the proper delta-function constraint in the functional integral. 

Expanding to quadratic order in s and i, 

Se,,(P, Aa*) = ; JJ(r,A-1(~,p)li+2sA-1(p,~)i+iA-1(~,~)i)+... , (5) 

A-‘(p,X) = A-‘(X,p). The indices on X”’ are often dropped. 
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I start with the diagonal term for the metric field, A-‘(p,p). For this it is 

possible to ignore i and write 

sgh.n(P)+~t’Iog(~~~)+~~rlog(~a~+~) 
1 =- 
2 JJ I,A-‘(p,p); + . . . 

The first two terms on the left hand side are identical to those in Polyakov’s formu- 

lation of the Nambu model. Their only dependence on p is through the conformal 

anomaly, so they give the usual factor of the Liouville action.g The last is an inte- 

gration over a massive mode. 

Let the momentum be pa: it is convienient to introduce a dimensionless variable 

P, which is proportional to the magnitude of the momentum, P = pZ/m2, and the 

unit vector i9 along pa. Then 

p _ 2 bw + - .. . . P 

The first term on the right hand side is the Liouville action to - O(;‘), written in 

an unfamiliar way. The second is the leading contribution of the massive mode at 

large momentum. In eq. (7) and henceforth, I write only the dominant terms at 

large P; corrections are at most - I/log(P) times the terms written. 

Fijrster,s Polyakov,’ and Davidz proposed that the Liouville term appears in 

the quantum theory of smooth surfaces. They argued that since the Nambu term 

has fewer derivatives than the extrinsic curvature term, and as the Liouville theory 

arises from the quantization of the Nambu term, that the Liouville term should be 

most significant about zero momentum. 

In contrast, eq. (7) shows that the Liouville term dominates A-‘(p, p) at large 

momentum. Because the contribution of the massive mode is so much smaller than 
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that of the Liouville term at large P, presumably when d # 26 the Liouville term 

dominates A-l(p,p) at large P to all orders in perturbation theory. Away from 

large P, however, the massive mode also contributes, and there is no reason why it 

cannot be as important zu the Liouville term. 

For example, consider the theory about d = oo. (The model is unstable in 

this limit, but it serves to make a point.) For large d, eq. (6) can be used to 

compute A-‘(p,p) around zero momentum.2 Though the the Liouville term con- 

tributes -P/6, as P + 0 the massive mode gives -1 + P/6 + . . ., so in all 

A-‘(P, PI - -1 + O(P’): the Liouville term does not dominate at small mo- 

mentum. This result, which supersedes that of ref. (2), is discussed at the end of 

the paper. 

The other terms in A-’ can be found in a straightforward manner by expanding 

perturbatively in ; and x0*. At large P the off-diagonal elements are 

A-l(p, Aa*) - 4 sign(d) ; log(P) + B”$* . 

A-‘(& X) can be read off directly from the results for flat surfaces: 

A-‘(& X) - sign(d) ($ (K’ + K’) + &log(P) K3 - $ K’ + $ KS> . (9) 

The K’s are matrices which span the space of two symmetric tensors, and are 

defined in eq. (4.8) of ref. (10). The momentum dependence of A-‘(X, X) follows 

from eq. (4.15) of ref. (10). 

The theory is perturbatively stable if every eigenvalue of A-l has a real part 

that is positive. These four eigenvalues can be determined with a little effort. 

One eigenvalue of A-’ is - sign(d)log(P)/(2P). For this eigenvalue to be 

positive so must the number of dimensions. Hence I assume that d > 0. 
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The characteristic equation for the remaining three eigenvalues is 

y3- 
( 

cp- !!$!z 
) 

y2 + ; log2(P) y - $ logs(P) = 0, 

where y represents the eigenvalue, and the constant c = (26 - d)/(Bd). In eq. (10) 

I have dropped any terms which are small at large P. The only exception is that 

for y*, since when d = 26, c = 0, and the term - log(P)/P is dominant. 

When the number of dimensions is not equal to twenty-six, the solutions to eq. 

(10) are given by 

y--p, &W(P) , $ hJ(P). 

When d is less than twenty-six (c > 0), all eigenvalues are real and positive and the 

theory is stable. The theory is unstable when d is greater than twenty-six (c < 0), 

with two positive and two negative eigenvalues. 

Twenty-six dimensions is a special case. There is one positive eigenvalue, and a 

pair of complex congugate eigenvalues: 

Y - * 5 WP) - $&7(P) , $ h(P) . 

There are corrections to the complex conjugate eigenvalues that are of order one, 

etc., but these are all purely imaginary. The leading real part of these eigenvalues 

is given in eq. (12), and as it is negative the theory is not stable in twenty-six 

dimensions. 

There is an easy way to understand these results. At least over short distances, 

smooth surfaces can be viewed as an amalgam of the Liouville theory (which re- 

sults from integrating over the metric field) and the model of flat surfaces (as that 

contains the dynamics of the constraint field). The Liouville theory which arises 

is proportional to 26 - d, so smooth surfaces are unstable in more than twenty-six 
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dimensions.* On the other hand, flat surfaces are stable only if the number of di- 

mensions is positive,‘r so this should hold for smooth surfaces as well. In twenty-six 

dimensions the Liouville theory vanishes, and detailed calculation is needed to show 

instability. 

That smooth surfaces are only stable for 0 < d < 26 is in one sense rather 

remarkable. For smooth surfaces, z is a vector, and so it is natural to expect that 

it should be possible to develop some sort of consistent solution at large d.*J This 

would allow the theory to be studied not just at large but over all momenta. For 

the Liouville theory of the Nambu string, the correct large d limit is about minus 

infinity.13 For flat surfaces, the correct large d limit is about plus infinity.‘* If Nature 

were kind, she would allow smooth surfaces to have a stable solution about either 

plus or minus infinity; instead, neither is. 

The nature of the unstable solution about infinite d can be studied by rotating 

the contours of integration for i, and i. As mentioned following eq. (7), in this 

limit A-‘(p,p) does not vanish about zero momentum. Further calculation shows 

that this is (usually) true for all components of the inverse propagator A-‘, as well 

as for those of the propagator A computed from A-‘. 

Thii is unlike the Nambu model. There, the interactions of the metric field 

p are given by the Liouville theory. 9 In perturbation theory, which can be used 

for d = -co, the two-point function of p has logarithmic correlations over large 

distances.13 

Let me make the dangerous assumption that qualitative properties of smooth 

surfaces for 0 < d < 26 can be gleaned from the solution at infinite d. It is 

certainly natural to expect that correlations between the X“*‘s are exponentially 

damped over large distances.1-3~7~8 The solution at d = cc indicates that for smooth 
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surfaces, interactions due to the extrinsic curvature term mix up the p and Xab fields 

together, so that in the end, neither have long-ranged correlations. 

Not too much should be made of these differences. What is most important 

is the two-point function of the r’s, since this measures the mean square size of 

the surface. For smooth surfaces about d = +oo, generally this size increases 

logarithmically with the area of the surface, as it does for Nambu strings around 

d = -m.13 

Nevertheless, that the model is more complicated in the infrared than first 

thought might indicate that Polyakov’s goal - of reaching a phase in which sur- 

faces are smooth instead of creased over large distances’ - could be easier than 

first thought. 

The solution about d = +co will be presented in a seperate publication, along 

with details of the present study. 

I thank F. David, and especially C. Zachos, for helpful discussions. 
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